If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-5=3
We move all terms to the left:
p^2-5-(3)=0
We add all the numbers together, and all the variables
p^2-8=0
a = 1; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·1·(-8)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*1}=\frac{0-4\sqrt{2}}{2} =-\frac{4\sqrt{2}}{2} =-2\sqrt{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*1}=\frac{0+4\sqrt{2}}{2} =\frac{4\sqrt{2}}{2} =2\sqrt{2} $
| 0.9*x=90 | | x=2x-43 | | A+2a=4 | | 2/5x+2x=180 | | -33=22n+7 | | 95=5y=15 | | 20.3x=1620 | | 4x+650=10x | | y+14=89 | | 5^x-1=2^2x+1 | | h/3=1.81 | | (2x+10)=(3-15) | | 4(2)^x+3=238 | | f-45=81 | | 5.6=6x-6.4 | | 24=(h)18-16-14 | | (2x+10)=(3x15) | | 0.06t=-3.12 | | -18=5(-r+4)+6(5r+2) | | g+1.8=9.4 | | 150=30n | | 10.12=4c | | -56=-6(6n+8)-8(1+4n) | | 0=7x+14 | | w/3=1.82 | | Y=-2x+75 | | 27y-8=46 | | 18=y+1 | | t-3.9=1.1 | | 1.4y+9=11.8 | | 7x+23=3x | | (x+4)²=(x-4)²-32 |